Existence of strong solutions of fully nonlinear elliptic equations
نویسنده
چکیده
The aim of this paper is to study the solvability of the Dirichlet problem for certain types of fully nonlinear elliptic equations. The theory of weakly-near operators, combined to Contraction Mapping and Schauder fixed point theorems, is used. Our main results generalizes similar ones given by S. Campanato and A. Tarsia.
منابع مشابه
Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملExistence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملA Priori Estimates and Existence for a Class of Fully Nonlinear Elliptic Equations in Conformal Geometry
In this paper we prove the interior gradient and second derivative estimates for a class of fully nonlinear elliptic equations determined by symmetric functions of eigenvalues of the Ricci or Schouten tensors. As an application we prove the existence of solutions to the equations when the manifold is locally conformally flat or the Ricci curvature is positive. Dedicated to the memory of Profess...
متن کاملSolvability of uniformly elliptic fully nonlinear PDE
We get existence, uniqueness and non-uniqueness of viscosity solutions of uniformly elliptic fully nonlinear equations of Hamilton-Jacobi-BellmanIsaacs type, with unbounded ingredients and quadratic growth in the gradient, without hypotheses of convexity or properness. Some of our results are new even for equations in divergence form.
متن کامل